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Quasi-Maxwellian Fields in Riemann-Cartan 
Spacetime 

L. C. Garcia de Andrade ~'2 

Received May 4, 1988 

The electric part of the Weyl conformal curvature tensor is computed for a static, 
cylindrically symmetric cluster in Einstein-Cartan (EC) theory. 

1. INTRODUCTION 

The electric and magnetic (dual) parts of the Weyl conformal tensor 
have been studied (Novello and Salim, 1978; Novello and de Oliveira, 
1980). Novello and Salim (1978) discuss the so-called quasi-Maxwellian 
equations of  gravity, which are dynamical equations which relate the deriva- 
tives of the electric and magnetic parts of the Weyl tensor in terms of the 
expansion 0, shear o-~, and vorticity ro~. of the fluid. However, these 
computations have been done in the context of the Riemannian V4 spacetime 
manifold. Here I present a dynamical relation between the evolution 
parameters, 0, tr.~, and to~ and the electric part of the Weyl tensor: 
E~.  = - C . ~ v ~ V " V  ~ in V4 Riemann-Cartan spacetime. 

2. THE RIEMANN-CARTAN GEOMETRY OF 
QUASI-MAXWELL FIELDS 

Let us consider a Riemann-Cartan spacetime with Lorentz signature 
( + - - - )  endowed with an affine connection F~0, where (Tauber, 1988) 

/x - -  /x r~r  - { ~ r  K ~  (2.1) 

where {~} are the usual Christottel-Levi-Civita symbols of general relativity 
and K."O is the contortion tensor 

K~, S ~ -  S~, (2.2) 
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where S~.t3 ] is the torsion tensor obeying the Weyssenhoff fluid relations 

S~t3 = V~S,~t3 (2.3a) 

S ~  = V~S,~IX = 0 (2.3b) 

The Weyl tensor in V4 is given by 

C,,,~.., = R,.~,, - R~t~.g.q., + R,,tixg.~]~, +lR~vtKg~]~. (2.4) 

where now the only properties of the Riemann tensor are R~..(p=)= 0 and 
the Ricci tensor has a skew-symmetric component Rtix. ~. 

Let us now consider the definitions of the electric and magnetic parts 
of the Weyl tensor 

E~, = -C~,,~,t~ V'~V t3 (2.5a) 

H ~ = - *  Cix,~t3 V'~ V t3 (2.5b) 

where * represents the dual of a tensor f,~ given by *f~ = ~,t3r~f ~8, where 
~7,~t3z,~ = (-g)a/:e,~t3~,8, and e t ~  ] is the totally skew-symmetric Levi-Civita 
tensor. Here I shall be concerned only with the electric part of the Weyl 
curvature in /./4, since to consider HI~ ~ is just to define the dual * of the 
spin density tensor; this is just to take the definition *S~t3 = r/~r~S ~ 
(Tauber, 1988). From expression (2.5a) and the Ricci identity in V4, 

(VixV _V~Vix)V ~ ~ k g = - R ~ k V  + ( K ~ -  K~)VkV (2.6) 

one can easily deduce the following dynamical expression for E.~ : 
1 A " A A 1 A 1 p, (&~ + 6-~ -~h~O) -(toix +o ' . -~Ohix) .  (o'~ +to~ ~h,~O) 

- -  [UA l l~A ilia, i /  1 A 1 tx k 1 A - . - ~ - 2 - - . - -  ,~+~R~+ +~(RkaV V - 3 R ) t ~  
1 k A 1 A 

- - i R k v  V V +gRVvV (2.7) 

where the dot represents the absolute derivative V"VIX in U4, and 0, o-,~, 
and to~.~ are, respectively, the expansion, shear, and vorticity of the spinning 
fluid. 

Let us apply equation (2.7) to the simple static, cylindrically symmetric 
cluster in EC where T,~ = pV~V~ and the only nonvanishing component of 
S ~  is $1~ = -S~ We also adopt the point of view of a comoving observer 
where Vix = 6~. 

To simplify matters, we still consider a metric where goo = 1. From the 
energy-momentum tensor of EC 

E C  - -  ' T ' G R A _  1~" 7 r  (2.8) Z ~  - . ~  -~-~.~.~ 

and the EC equations 

EC ( 2 . 9 )  Rixo -~gix~R = Tix~ 
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it is easy to compute equation (2.7) for this particular static (o-,~ = 0, ~o,, = 0) 
cosmological model in EC, 

~ A  _ _ ! ] ~ h  1 A 1 A h - 4--o V~ + T~ V~ - ~( T~ +xR6~ + }V ~S'~Z'v) + Too6~ (2.10) 

which has components 

~z~ =�89 +~R) (2.11a) 

~:I =~:22=~:3= p - ~ R  (2.11b) 

n :~ = 0, n : o -  , r ,  r  - - ~ - ~ , 2  =0 ,  H:3~ (2.11c) 

~ 1  __ __ 1~-"), - -  4 v  a ~ , 2  'K~~ ' - -  - [ E l  - (2.11d) 

E 3= -~:32 = 0 (2.11e) 

Wl z =-R:2 =-1r74-,~o, r (2.11f) 

From equations (2.11) one immediately sees that although the properties 
~: . .g"~=0 and H . .VV=0  are still valid in V4, the symmetry property 
E. .  = n:.. is not valid anymore in U4. The presence of torsion introduces a 
skew symmetry in the quasi-Maxwellian fields. It is trivial to check that the 
same happens with the magnetic field N. . .  From expression (2.10) one can 
also construct the quasi-Maxwellian invariants /1 = C,~o~C ~ ~  and 11 = 
C.~ov * C "~~ This is done elsewhere (Garcia de Andrade, 1988). 

A C K N O W L E D G M E N T S  

I would like to thank Dr. Mario Novello, Prof. George F. Ellis, and 
Dr. P. J. McCarthy for helpful comments on the subject of this paper and 
Dr. L. L. Smalley for helpful conversations and encouragement, Partial 
financial support from CNPq (Brazil) and the Universidade do Estado do 
Rio de Janeiro are also acknowledged. The author is a CNPq Post-Doctoral 
Fellow. 

R E F E R E N C E S  

Garcia de Andrade, L. C. (1988). Riemann-Cartan-Maxwell Fluids, Rev. Bas. de Ffs. 
Novello, N., and de Oliveira, J. D. (1980). General Relativity and Gravitation, 12(11). 
Novello, M., and Salim, J. M. (1978). Notas 1 Escola de Cosmologia e Gravitafao-CBPF. 
Tauber, G. (1988). International Journal of Theoretical Physics, 27, 335. 


